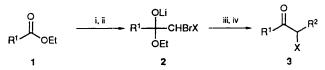
Easy and General Synthesis of Unsymmetrical α -Halogeno Ketones


José Barluenga,^{a,*} Luján Llavona,^a Miguel Yus^b and José M. Concellón^a Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain

^b Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, 03690 Alicante, Spain

The reaction of carboxylic acid esters 1 with *in situ* generated bromohalomethyllithium (1:2 molar ratio) at -78 °C followed by reaction with lithium dialkylcuprate (1:1 molar ratio) at 0 °C, leads, after hydrolysis, to the corresponding α -chloro or α -bromo ketones **3**.

α-Halogeno ketones derivatives are an important class of organic compounds, the chemistry of which occupies a key position in modern organic chemistry, and the literature indeed proves the wide synthetic potential of this class of compounds.¹ However, to our knowledge, the syntheses of unsymmetrical a-halogeno ketones reported are not simple,² or the starting materials are not commercially available,³ or they can only be used for the preparation of halogenomethyl ketones.⁴ Recently we described the synthesis of α, α -dihalogenomethyl ketones,⁵ and α, α, α' trihalogenomethyl ketones⁶ from in situ generated dihalogenomethyllithium⁷ and carboxylic or α -halogenocarboxylic acid esters respectively. We now report a simple, general and easy one-pot methodology for preparation of unsymmetrical ahalogeno ketones using dihalogenomethyllithium, carboxylic acid esters and lithium dialkylcuprates.

The reaction of several carboxylic acid esters 1 with bromochloromethyllithium or dibromomethyllithium (1:2 molar ratio) at -78 °C and further treatment with lithium dialkylcuprate (1:1 molar ratio) at 0 °C led, after hydrolysis, to the corresponding α -chloro or α -bromo ketones 3, respectively (Scheme 1 and Table 1).[†]

Scheme 1 Reagents and conditions: i, 2 mol equiv. BrClCH₂, Br₂CH₂; ii, 2 mol equiv. LDA, -78 °C; iii, R_2^2 CuLi, 0 °C; iv, aq. HCl, 0 °C

Bromochloromethyllithium and dibromomethyllithium were generated in situ by treatment of bromochloromethane or dibromomethane with lithium diisopropylamide. The proposed mechanism proceeds via 2 as intermediate, which is stable under the reaction conditions due to the presence of the electronegative halogen substituents.⁵ The alkylation of 2 with

R ¹	x	R ²	Yield ^b (%)	Selected ¹³ C NMR data of 3 ^c	
				δ_{CHX}	$\delta_{\rm co}$
Pr	Cl	Me	83	58.0	204.7
Pr	Cl	Bu	87	63.5	205.0
\mathbf{Pr}^{i}	Cl	Bu	84	61.4	208.3
Bu ⁱ	Cl	Bu	78	63.7	204.9
Ph	Cl	Bu	50	57.5	193.4
PhCH=CH	Cl	Me	37	57.7	208.4
PhCH=CH	Cl	Bu	85	62.9	193.6
Pr	Br	Me	68	47.2	203.7
Pr	Br	Bu	78	53.5	203.9
Pr ⁱ	Br	Me	50	45.8	207.9

All products 3 were fully characterized by spectroscopic method (IR, ¹H and ¹³C NMR, and mass spectra); purity (>95%) was checked by GLC. ^b Isolated yield based on the starting ester. ^c In CDCl₃; recorded in a Bruker AC-300 spectrometer.

lithium dialkylcuprate affords, after hydrolysis, the a-halogenated ketone 3.

In summary, we believe that the methodology described in this communication represents a simple, rapid and versatile one-pot procedure for the synthesis of unsymmetrical a-bromo or α -chloro ketones 3 starting from commercially available materials.

References

- 1 See, e.g., N. De Kimpe and R. Verhé, in The Chemistry of a-Haloketones, α -Haloaldehydes and α -Haloimines, ed. S. Patai, J. Wiley, Chichester, 1988.
- 2 (a) C. J. Kowalksi and M. Hagne, J. Org. Chem., 1985, 50, 5140; (b) J. Villieras, B. Kirschleger, R. Tarhouni and M. Rambaud, Bull. Soc. Chim. Fr., 1986, 470.
- 3 (a) B. Hahn, B. Köpke and J. Voss, Liebigs Ann. Chem., 1981, 10; (b) S. Motohashi and M. Satomi, Synthesis, 1982, 1071.
- 4 (a) G. Friour, G. Cahiez and J. F. Normant, Synthesis, 1984, 37; (b) G. Capozzi, G. Romeo, V. Lucchini and G. Modena, J. Chem. Soc., Perkin Trans. 1, 1983, 831.
- 5 J. Barluenga, L. Llavona, J. M. Concellón and M. Yus, J. Chem. Soc., Perkin Trans. 1, 1991, 297.
- 6 J. Barluenga, L. Llavona, J. M. Concellón and M. Yus, Synthesis, 1990, 1003.
- 7 J. Barluenga, J. L. Fernandez-Simón, J. M. Concellón and M. Yus, J. Chem. Soc., Perkin Trans. 1, 1989, 77 and refs. cited therein.

Paper 1/04089H Received 6th August 1991 Accepted 9th September 1991

[†] Typical procedure: To a stirred solution of bromochloromethane or dibromomethane (10 mmol) and the starting carboxylic acid ethyl ester 1 (5 mmol) in tetrahydrofuran (THF) (10 cm³) was added a solution of lithiumdiisopropylamide in THF (20 cm^3) and diethyl ether (10 cm^3) during 10 min at -78 °C. The mixture was stirred for 10 min at the same temperature and then was added a solution of lithium dialkylcuprate (5 mmol) [(prepared from CuI (5 mmol) and the corresponding organolithium compound (10 mmol)] in diethyl ether (10 cm³) at 0 °C After 30 min the mixture was hydrolysed with aq. HCl (6 mol dm⁻³; 10 cm³), the solid was filtered off, the filtrate was extracted with Et_2O , and the ethereal layer was dried (Na_2SO_4) . The solvents were removed (15 mmHg) and the resulting residue was distilled to afford the corresponding halogenated ketone 3.